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Julia sets are examined as examples of strange objects which arise in the study 
of long time properties of simple dynamical systems. Technically they are the 
closure of the set of unstable cycles of analytic maps. Physically, they are sets of 
points which lead to chaotic behavior. The map f ( z ) =  z2+ p is analyzed for 
smallp where the Julia set is a closed curve, and for largep where the Julia set is 
completely disconnected. In both cases the Hausdorff dimension is calculated in 
perturbation theory and numerically. An expression for the rate at which points 
escape from the neighborhood of the Julia set is derived and tested in a 
numerical simulation of the escape. 

KEY WORDS: Chaos; dynamical systems; fractal dimension; escape rate; 
Julia set. 

1. INTRODUCTION 

1.1. Definition of Julia Set 

In dynamical systems theory (1) one studies the effect of a deterministic 
process which takes a point r into a new point r' = f(r). One is particularly 
interested in classifying points into sets which remain invariant under the 
mapping f.  Iterating f corresponds to studying the long-time behavior of a 
dynamical system. All points of an invariant set show similar long-time 
behavior. Some sets show extremely complicated long-time behavior and 
for this reason are called "strange. ''(2) 

Strange sets which appear in nature have proven to be difficult to 
study quantitatively. For this reason we focus our attention here on a 
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problem which shares many features of more realistic models, yet is 
relatively tractable. The simplification is that we study a mapping of the 
plane which can be represented as an analytic mapping of a single complex 
variable. We shall treat the case in which f is a polynomial 

f ( z )  = z Q + p  (1.1) 

with special emphasis on the case Q = 2. 
Consider first the simple mapping 

f ( z )  = z Q (1.2) 

We find three invariant sets associated with the mapping (1.2). Initial 
points inside the unit circle are attracted to a stable fixed point at 0. Initial 
points outside the unit circle are attracted to a stable fixed point at infinity. 
The unit circle itself is the third invariant set. 

The Julia set of a mapping is defined a s  the closure of the set of 
unstable cycles. (3-5) The mapping (1.2) has stable fixed points at 0 and oo. 
Any unstable cycle must therefore lie on the unit circle. Indeed, the points 

z ( tj) = e 2~itj 

t j -  Q L  1 (1.3) 

j = 0 , 1 , 2  . . . . .  Q ' - 2  

are the elements of all unstable cycles of length n. Note that these points 
are dense on the unit circle and hence the unit circle is the Julia set of the 
mapping (1.2). The notation Fix f" will be used to denote the set of 
unstable fixed points of f ' .  

One can also describe the Julia set in terms of the inverses f~(~).. ~, of 
f ' .  The Q" inverse functions are labeled by the values of "rt,~" 2, . . . ,  % and 
are defined recursively by 

f - ( , + O  o -"  (1.4) o,, . . . , ,  = f,71 f~:~...,o 

where the symbol r i defines a particular branch of the inverse. When f is a 
quadratic function the inverses are 

f ~ - '  ( z )  = "r(z _ p ) , / 2  (1.5) 

: . : :  . . . . .  ( z )  = - p  + + . . .  +  o(z - p),:l ''2) 1/2 

where i- i = + 1. 
If z is a member of the Julia set of f, then the inverses f - ' ( z )  are also 

members. In fact as n---> oo the set f - " ( z )  approaches the entire Julia set 
with the same distribution (3'12) as the set Fix f t .  
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Fig. 1. Julia sets of the mappingf(z) = z 2 + p for smallp. (a)p = -0.2, (b)p = 0, (c)p = 0.2. 
In case (b) the Julia set is the unit circle. Stable and unstable fixed points are denoted s and u, 
respectively. 
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Fig. 2. 
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Jul ia  set of the m a p p i n g  f ( z )  = z 2 - 5. The  uns tab le  f ixed points  are  deno ted  u. 

1.2. Further Examples of Julia Sets 

The unit circle is an unusually simple example of a Julia set. More 
complicated sets are found when the parameter p in (1.1) is taken to be 
nonzero. We will study the cases of small and large p in detail. When p is 
small the Julia set remains topologically a circle. That  is, it can still be 
parametrized by a continuous function z(t) where t E [0, 1) and z(0) = z(1). 
Points outside the Julia set still flow to infinity while points inside the Julia 
set flow to the stable fixed point z* ~ p .  Figure 1 shows examples of such 
Julia sets. Notice that the curves have bumps on top of bumps on top of 
bumps. Our major goal in this paper is to characterize the geometry of this 
curve. Sullivan (6) has proven that these sets have Hausdorff dimensions 
greater than 1. 

As IP[ increases the topology of the Julia set undergoes many 
changes. (7'8) For  large IPl the topology simplifies. All cycles are unstable 
except the point at infinity which attracts the entire complex plane except 
the Julia set. The Julia set is completely disconnected, as can be seen in Fig. 
2. Points of the Julia set cluster around the unstable fixed points at 
z* ,,~ (-p)~/~ 

1.3. Measurable Quantities 

We seek ways to characterize Julia sets. One commonly used charac- 
terization is the Hausdorff dimension D , ,  which describes geometrical 
properties of the set. An attribute of Julia sets which describes dynamics in 
addition to geometry is the escape rate. To define it, cover the Julia set with 
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a region which does not contain any stable cycle. Spray a large number of 
points onto this area and iterate them. The number of points which remain 
in the area after n iterations decreases exponentially for large n. The rate of 
decrease is independent of the area which we choose and is called the 
escape rate of the Julia set. 

In Section 2 of this paper we show how perturbation calculations for 
small and large p can be carried out. In Section 3 we specialize to the 
subject of escape rate, derive formulas with which the escape rate can be 
calculated, and test these formulas by direct numerical experiments. Fi- 
nally, in Section 4 we utilize a theorem of Ruelle (9) to compute the 
Hausdorff dimension numerically, and in perturbation theory. 

2. PERTURBATION THEORY 

When p = 0 the Julia set consists of the unit circle. Parametrizing this 
curve as z(t) = e 2~rit induces the linear map t---> Qt on t 

f ( z ( t ) )  = z(Qt)  (2.1) 

When p is nonzero but small enough so that the Julia set is topologically 
equivalent to a circle we can still parametrize the curve so that (2.1) is 
satisfied. (3'5) The function z(t) can be formally expanded in powers of p 

z(t) = e2~it[1 +_PUl(t ) +p2U2(t ) + - - .  ] (2.2) 

where each Um(t ) is periodic with period 1. Substituting (2.2) into (2.1) and 
equating terms with the same order in p yields, up to second order, the 
following equations: 

U,( Qt) - QU,(t) = e-2~iQ' (2.3) 

U2( Q t ) -  QU2(t ) - Q( Q - 1) U2(t ) (2.4) 
2 

Notice that the basic linear equation 

q~( Qt) - Qe~(t)= e -2~r/t  (2.5) 

has the solution 

Therefore, 

q~(t)- Q1 k Q -le-2~iO't (2.6) 
l = 0  

Ul( t ) = ~( Qt) (2.7) 

Q( Q - 1) 
U2(t) - 2 ~ Q -("+12)eP(( Ql, + Ql2)t ) (2.8) 

11,12=1 
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In general, the mth-order terms obey an equation of the form 

Um( Qt ) - QUo, ( t )=  Hm(t ,  Ul( t ) ,U2(t) ,  . . . , Um_l(t))  (2.9) 

SO that one can solve recursively for all higher-order terms. 
This knowledge of z ( t )  allows us to do formal perturbative calculations 

of various properties of the Julia set. For example, one quantity that will 
prove useful for understanding both the fractal dimension and the escape 
rate is 

- D  

In what follows we extend to third order in p a calculation first carried out 
by Ruelle (9) to second order. Relations (1.3) and (2.1) allow us to express 
the set Fix f "  as 

( " ) F i x f ' =  z ( ~ ) : ~ -  Q J2_ 1 , j = 0 , 1 , . . . , Q ' - 2  (2.11) 

Using the fact that 

[ ,1 df" ,=z(~= II f'(z( Q%)) Q" n-~ = I-I z (  Qmtj (2 .12)  
m=O m=O 

and introducing the notation 

Q"-2 
1 E c(9) (2.13) ( G ( t ) ) . -  Q .  1 j=0 

we can wr i t eAn(D  ) as 

) A,(D)= Q- ,D(Q,_  1) 1-[ Iz(Qm~-)l - ( e - ~  (2.14) 
m ~ O  n 

By substituting (2.2) into (2.14), A , ( D )  can be formally expanded in 
powers of p. The evaluation of the averages can then be performed through 
the use of the identity 

(2~rimt\ { 1, m = 0 mod Q " -  1 
e 2~ = _ O, m ~ 0 mod Q ~ - 1 

(2.15) 

We have carried out this calculation to third order in p, and find that for all 
n > 4  

. _D2n  
A . ( D  ) = Q - . D (  Q .  _ 1) 1 . pp--~--  +60,2(p~ +/5~v) 

• D~ D3+ 

(2.16) 
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The structure of Eq. (2.16) is determined by the invariance of geometri- 
cal properties of the Julia set under certain coordinate changes. First, 
consider the reflection 

h(z )  = ~ (2.17) 

Note that 

h o f o  h - ' ( z )  = z Q + f i  (2.18) 

Since A, (D) must be invariant under reflection, the perturbation expansion 
must be symmetric under interchange o fp  and/3. Next, Eq. (2.15) prohibits 
the appearance of terms proportional to ( p ' + / 3 " )  for sufficiently large n. 
Finally, consider the family of rotations 

hr(7-, ) = e 2~rir/( Q-l)z, r = 0, 1 . . . . .  Q - 2 (2.19) 

Note that 

h,o f o h r I(z) = z Q -.I- e 2~ir/( Q- 1~ (2.20) 

Since A , ( D )  must be invariant under rotations, the perturbation expansion 
must be symmetric under rotations of p by hr. Thus terms of the form 
(p~S + p]vs) are allowed only if ( r -  s ) / (  Q - 1) is an integer. 

For large p the Julia set is clustered around the Q unstable fixed points 
at z .~ ( - p ) I / a .  If we consider only the leading behavior then 

A , ( D ) ~ Q " ( ' - * ' ) I t ,  I-"~/Q (2.21) 

3. ESCAPE RATE 

The escape rate is defined by the following algorithm: spray a large 
number of points, No, in some neighborhood of the Julia set. Iterate them n 
times and count the number of points remaining in F, N, .  As n gets large, 
N, decays exponentially: 

N , ~ q - "  (3.1) 

where q is the escape rate. 
To derive an expression for q, let us assume a uniform distribution of 

points p(x, y) which is non-zero in F and zero otherwise, 

frP( X, y )  dx dy = 1 (3.2) 

the number of points remaining in F after n iterations is 

B.= frdZr'd2rp(r)p(r')8[r'-F(r)]= frd2rp(r)p[f"(r)] (3.3) 
with r ----- (x, y). Since p[f '(r)] =/= 0 implies p(r) v ~ 0, but not vice versa, it will 
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be more useful to look at the inverses f,7.".,,,(r) of i f ( r ) .  Since f is an 
analytic function, the Jacobian of the transformation from r to r' is 

= d f ( n ) ( z )  i=/47..,,(, ) (3.4) a 

with z = x + iy. Therefore 

P(r')P I frT.n.. ~,(r')] 
8. = 2 s a2r' (3.5) lafn/dzl =r,...4 ,) 

Note that for all r' in F and in the limit n ~ o o ,  the value of z =  
f,7.n.. ,,(Z') is independent of z' (or  r'), and is distributed according to the 
density of unstable cycles. (3) Thus 

Bn~" An(2) = z ~2Fix ff ~ -2 (3.6) 

When iv < - 2  the Julia set lies on the real axis and we can define a 
one-dimensional escape rate through 

B n ~ A . ( 1 ) =  2 d i n - '  (3.7) 
z~Fix ff dz 

The escape rate is then 

q = lim A 2 ' / n ( D )  (3.8) 
n --)' OO 

We may use Eq. (2.16) for An(D ) to express q as a function of p (for 
small p): 

q = Q {1 - p f i  - 8Q,2(p2fi +fi]v)} (3.9) 

For p ~ - oo and Q = 2, we may use the fact that the Julia set is clustered 
around x = +(ipl), /2 to derive 

= I (Ipl)' /2' D = 1 (3.10) q 
( 2lp 1, O = 2 

We have tested Eq. (3.8) in numerical experiments done on the 
m a p p i n g f ( z ) = z  2 + p  a t p ~ , 0  a n d p ~ - 2  (for D = I  and D = 2 ) .  The 
simulations were done by randomly distributing N O points (N O = 10 5, 10 6) 
in some neighborhood F of the Julia set and counting the "survivors" after 
n iterations. Following a transient period of ~ 10 iterations, an exponential 
decay is observed to which a decay rate q is best-fitted. In the one- 
dimensional case it is possible to measure the escape rate by a more 
accurate procedure. In that case, the neighborhood F of the Julia set is a 
segment on the real axis. Consider its back-iterates. Iterating by f - i  
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Table I, Theoretical and Experimental Escape Rates a 

p q-theoretical q-experimental 

451 

2 - D  

1 - D  

0.1 1.9741 1.971 
0.15 1.9282 1.930 
0.2 1.8139 1.813 

- 2.015025 2.125 2.129 
- 2.075625 2.339 2.341 
- 2.1525 2.545 2.548 
- 2.230625 2.732 2.717 

-2.4725 1.3020 1.3022 
- 3.75 1.7384 1.7380 

- 20 4.3888 4.3887 
- 48.75 6.9278 6.9285 
- 90 9.4458 9.4473 

aTheoretical rates were obtained through Eq. (3.8). D = 2 experimental 
rates were obtained through iterating an ensemble of points. D = 1 
experimental rates were obtained through Eq. (3.11). 

genera tes  two segments  which by  f m a p  into F. W e  deno te  by  F~ the total  
measure  ( length) of these segments .  I te ra t ing  by  f - 2  generates  four  seg- 
ments  whose to ta l  length we deno te  by  I" 2, etc. (10) Clear ly  the escape ra te  is 

I ' n  1 
q =  l im (3.11) 

n --)  O0 ~'~n 

F o r m u l a s  (3.8) and  (3.11) were eva lua ted  at  n = 11. Our  exper imenta l  
results are  summar i zed  in Tab le  I. The  good  agreement  be tween  the 
theoret ica l  p red ic t ion  Eq. (3.8), and  the numer ica l  results thus va l ida tes  our  
fo rmula t ion  of the escape rate.  

4. H A U S D O R F F  D I M E N S I O N  

A theorem of Ruel le  (9) p rovides  a useful  fo rmula  for compu t ing  
H a u s d o r f f  d imensions .  Ruel le  p roved  that  when D equals  the Hausdo r f f  
d imens ion  of the Jul ia  set of f the series 

un 
f ( u )  = exp A n ( D  ) - -  (4.1) 

n = l  /'/ 

extends  to a m e r o m o r p h i c  func t ion  with a s imple pole  at  u = 1 a n d  no 
o ther  poles  or  zeros inside the unit  disk. Tak ing  the logar i thm of Eq. (4.1), 
we see that  a necessary  condi t ion  for  DH to be  the Hausdo r f f  d imens ion  is 

l im A n ( D  H ) = 1 ( 4 . 2 )  
n ---~ oo 
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Table II. Comparison of Numerical Calculations of DH a 

n A , , ( D , , )  = 1 A n ( D , , )  = 1 - 2 - "  

5 0.991808 1.00096909 
6 0.997190 1.00097653 
7 0.999363 1.00097966 
8 1.000275 1.00098091 
9 1.000668 1.00098140 

10 1.000841 1.00098160 
11 1.000918 1.00098168 
12 1.000952 1.00098171 

a Calculations carried out for p = 0.05, 

Inspecting Eq. (2.16) we see that (4.2) is satisfied if 

PP + (~Q,2 3 ( p ~  +p~o) (4.3) 
D,~ = 1 + 41n Q 161n Q 

The first two terms in this formal power series were obtained by Ruelle. 
We have checked Eq. (4.3) numerically. Table II shows typical results 

of a calculation for mapping f ( z ) =  z 2 + p ,  p = 0.05. A straightforward 
calculation of D H is shown in the second column. Here we define D n by 
An(Dn) = 1. Note that D n - 1 has converged to just one significant figure 
when n = 12. 

We can speed the convergence of D n to D H by employing the results of 
perturbation theory. Inserting the result (4.3) into our expression for An(D ) 
(2.16) we find 

An(D  H ) = 1 - O - "  + O(p3O - "  ) (4.4) 

This rather slow convergence of An(DH) to 1 is the cause of the slow 
convergence of D n to DIr To speed up this convergence, we define D n by 

An(D n) = 1 - Q - n  (4.5) 

The last column in Table II is obtained in this manner. 
With this numerical technique we can check the correctness of Eq. 

(4.3). We assume, on the basis of symmetries discussed in Section 2, 

D . ( p )  = 1 + a21Pl 2 + a31pl2Re(p) + . . .  (4.6) 

This form is consistent with numerical studies by L. Garnett  (unpublished). 
We can determine a 2 and a 3 numerically by 

D .  (?) + D .  ( - ? )  - 2 
a 2 = lim (4.7) 

e-~0+ 2p 2 



Strange Objects in the Complex Plane 453 

and 

O H (/0) - Dtt ( - t 7 )  
a 3 = lim (4.8) 

p---~0 + 2/03 

Results of this calculation are shown in Table III. 
The Hausdorff  dimension can be computed in the limit of large/0. 

Setting A,,(DH) = 1 in Eq. (2.21) yields 

Qln  Q (4.9) 
OH-- lnlp I 

It is interesting to note that in the limit as/0 ~ - m  we can compute D H 
without using Ruelle's formula. Observe that the Julia set is contained in 
the interval 

_~1/2 l c , = [ � 8 9 1 8 8  , ~ + ( � 8 8  (4.10) 

Taking the preimages of this interval of f we note that the Julia set is 
contained in 

c2 = c, - ([ ~ - p  - ( ~-/0)]/2]'/2, [ �89 + ( �88 '/2) (4.11) 

In general we find that the Julia set is contained in C n where C. consists of 
N(~) = 2 n intervals with maximum length k ~ l p l  -"/2. Employing Man- 
delbrot's (]1) formula 

2t-N(Tt)--X ' - ~  (4.12) 

yields Eq. (4.9) with Q = 2. 
A final observation is that the escape time and Hausdorff dimension 

are independent characterizations of a Julia set. To see this, assume they 

Table III. Test of Perturbation Theory for D H (4.3) 

p (D + + O -  -2)/21P12 (D + -D-)/21Pl 3 

+ 0.1 0.379422 0.593 
_+ 0.01 0.360845 0.542 
_+ 0.001 0.360677 0.540 

theoretical 0.360674 0.541 

aD + and  D -  are determined by A l2(D + ) =  A I2(DH) for the map 
f ( z )  = z 2 + p and A I 2 ( D - )  = A I2(DM) for the map f ( z )  = z 2 -  p.  The 
linear combinations of D + and D -  in the second and  third columns 
pick out  the coefficients of Ip[ 2 and [pl2Re(p), respectively. The bot tom 
row gives the predicted values from Eq. (4.3). 



454 Widom et al. 

are related by 

q = g ( D  H - 1) (4.13) 

for some function g. Expanding (4.13) in powers of p we notice that for 
(4.13) to hold we must have the ratio of quadratic coefficients in q and D/4 
equal to the ratio of cubic coefficients. Inspecting equations (3.9) and (4.3) 
we see that this is not the case. 
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